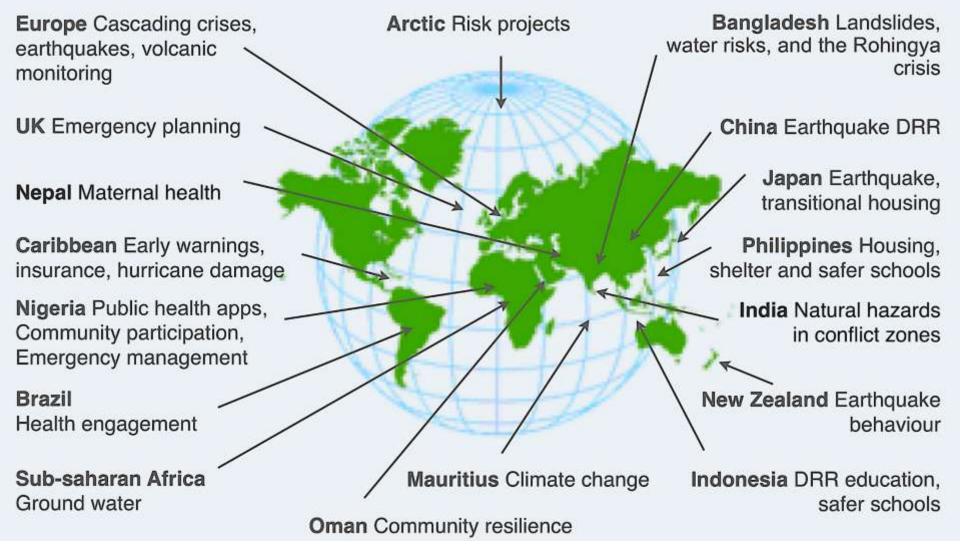
3rd International Conference of Social Sciences and Education (ICSSED)

Welcome To My Talk

Progress in Disaster Science for Achieving the UN Sustainable Developments Goals (SDGs)

Dr. Bayes Ahmed Lecturer Institute for Risk & Disaster Reduction (IRDR) University College London (UCL), UK


23 July 2019

About UCL – University College London

INSTITUTE FOR RISK AND DISASTER REDUCTION

DCL

Masters Programmes

- □ Risk, Disaster and Resilience MSc
- Risk and Disaster Science MSc (Data Science and Management Pathway)
- □ Space Risk and Disaster Reduction MSc
- Risk and Disaster Reduction MRes

Duration: Full-time 1 year

Part-time 2 years

Contact us

UCL IRDR Admissions tutor

Dr Rosanna Smith

Email: irdr-enquiries@ucl.ac.uk

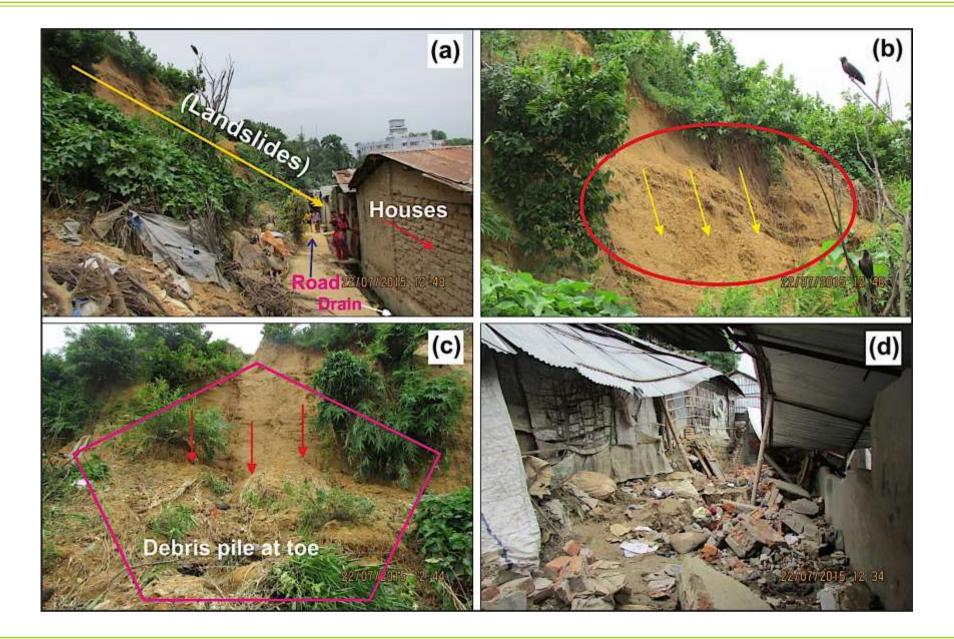
Web: https://www.ucl.ac.uk/risk-disaster-reduction/

Developing leaders and experts in risk and disaster reduction

2016 Amatrice Earthquake, EEFIT mission

1.5 By 2030, **build the resilience of the poor and those in vulnerable situations** and reduce their exposure and vulnerability to **climate-related extreme events** and other **economic, social and environmental shocks and disasters**.

11.5 By 2030, significantly reduce the number of deaths and the number of people affected and substantially decrease the direct economic losses relative to global gross domestic product **caused by disasters**, including water-related disasters, with a focus on protecting the **poor and people in vulnerable situations**.


10.2 By 2030, empower and promote the **social, economic and political inclusion** of all, irrespective of age, sex, disability, race, ethnicity, origin, religion or economic or other status.

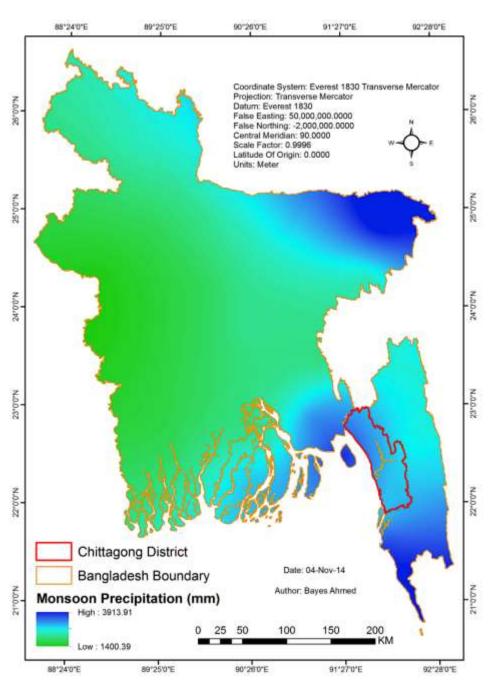
11.B By 2020, substantially increase the number of **cities and human settlements** adopting and implementing integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to **climate change**, **resilience to disasters**, and develop and implement, in line with the Sendai Framework for Disaster Risk Reduction 2015-2030, **holistic disaster risk management** at all levels.

Landslide Work


Landslides

Hill Cutting

2017 Rohingya Exodus (1.2 million refugees)



Landslide Disasters

Date	Location of Landslides	Rainfall Sequence	Consequences
27 July 2015	South Baharchharha	682 mm rainfall in 6	5 fatalities, and 4
27 July 2015	area, Cox's Bazar	days	houses buried
12 June 2017	All five bill districts	300 mm rainfall in 24	159 killed and 88
13 June 2017	All five hill districts	hours	injured
25 July 2017	Sadar and Ramu Upazila,	677 mm rainfall in 6	5 killed and 5 injured
20 July 2017	Cox's Bazar	days	5 killed and 5 injured
11 June 2019	Illubia Dabingua compo	459 mm rainfall in 4	1 killed and 500
11 June 2018	Ukhia Rohingya camps	days	injured
12 June 2018	Maheshkhali Upazila		1 killed
	Miar Ghona, CBM and	229 mm roinfall in 24	
25 July 2018	Dokkhin Mithachori,	228 mm rainfall in 24 hours	5 killed
	Ramu Upazila	nouis	

Activities

nformation

i**de ID :**05

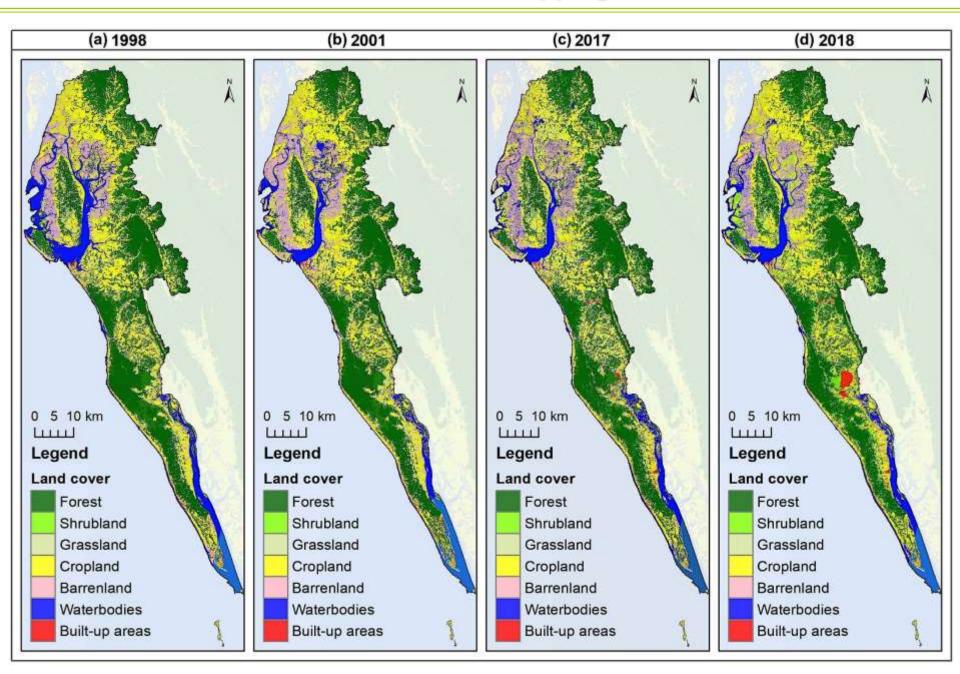
ide Location: Tanker Pahar, Moti Jharna nates: 22° 20'54.27''N, 91° 48'51.60''E

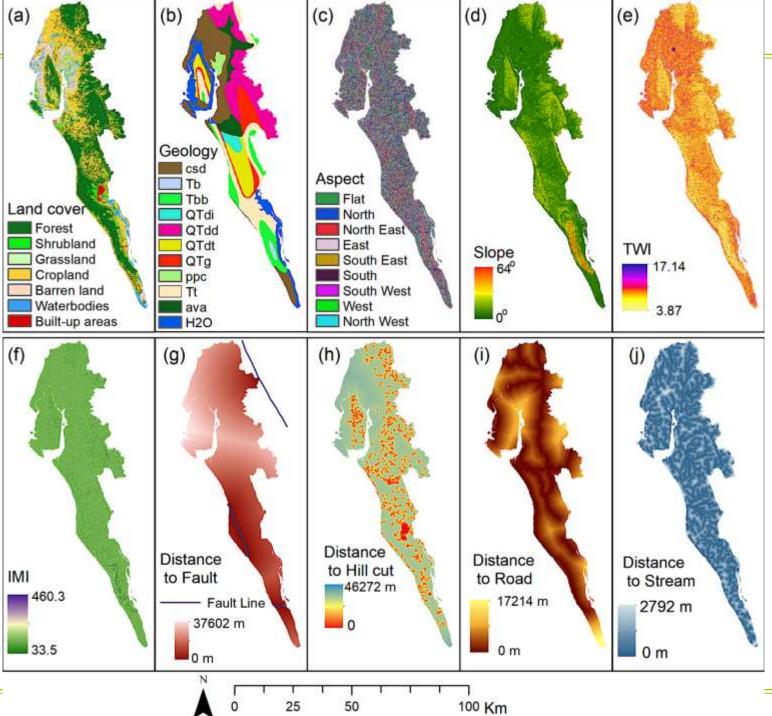
Datum: WGS 1984
Elevation (m): 41.18
Area of Displaced Mass (sqm): 331.84
Rainfall: Unknown

ide Mechanism				
Movement: Slide	Style: Single			
Active, Reactivated, Suspended	Style: Single Water Content: Moist Material: Soil/Earth			
ution: Advancing	Material: Soil/Earth			

:vover/Use Type (%):

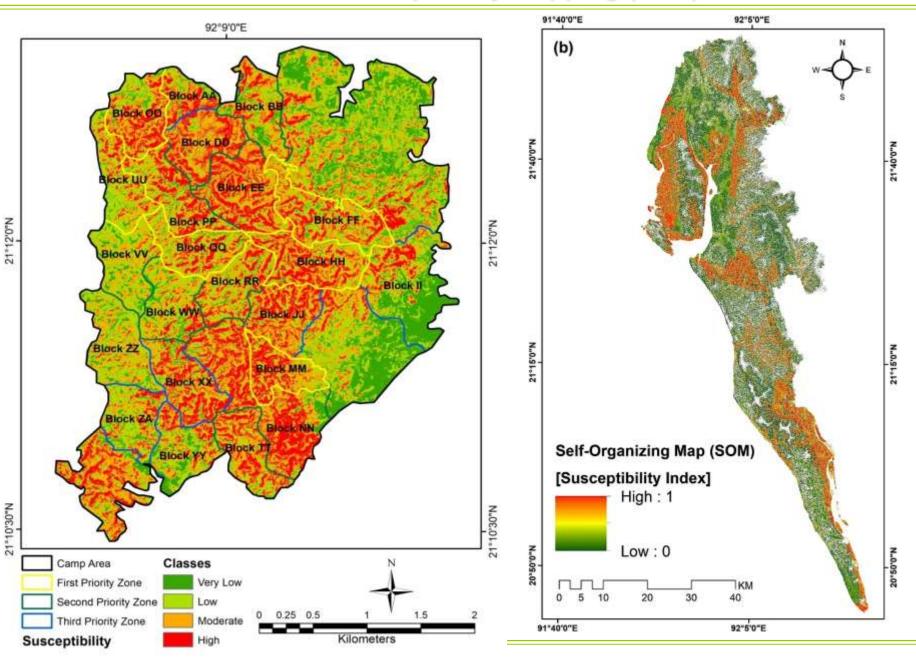
eous vegetation is the Primary land cover of Tanker Pahar. Forest/ woodland type is also n this hill.


of Movement:

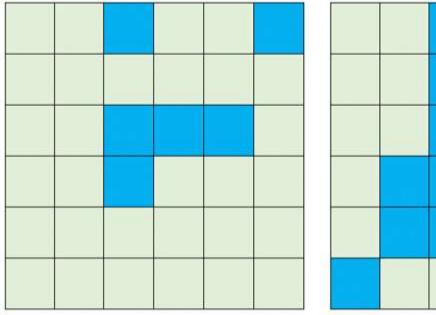

tting is the major issue that caused landslide in this area and intense rainfall acted as a ng factor for landslide.

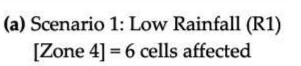
lide History and Future Risk of Landslide

de in this site occurred in 1982, 1989,1991,1994,1996 and 2013. 10 houses got damaged and 22 people died due to landslide at different periods. Utility facilities were highly damaged in ident. Economic activities were hampered so does the social life of people. Environment has und to be severely damaged. Still there are many houses located at the down slope of the hill. this site has been found to be sandy. The escapement slope is found to be near vertical. The nass is a part of upper portion. Vertical Slope characteristics can be considered as a ting factor to future landslide for this hill. Settlements located at the down slope of this hill huge risk of massive landslide. The risk is high (Field survey, August 2014).


Land Cover Mapping

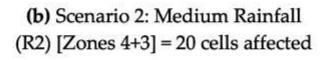
Factor Maps

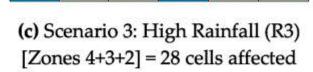

Landslide Susceptibility Mapping (LSM)



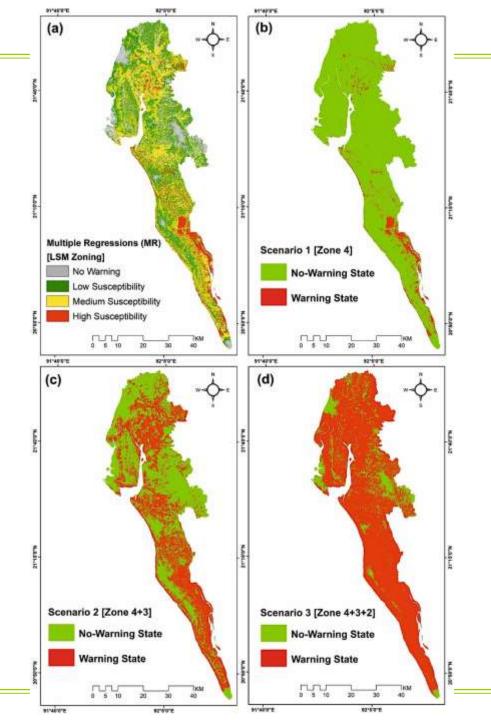
Landslide Hazard Matrix	Zone 2 (Low LSM)	Zone 3 (Medium LSM)	Zone 4 (High LSM)
R1 (Low Rainfall)			
R2 (Medium Rainfall)			
R3 (High Rainfall)			

No-Warning State Warning State


A hazard class (no warning vs. warning state) is assigned based on the assumption that the higher the susceptibility, the lower the rainfall.



-



No-Warning State Warning State

0	35	210	151	142	226
41	67	180	129	111	167
98	105	255	249	250	87
66	170	222	180	200	99
38	119	178	159	199	80
186	20	17	77	45	20

Rainfall Amount (mm)

[Consecutive 5 Days Cumulative]

Low Rainfall (R1) = 95 - 220

Medium Rainfall (R2) = 221 - 345

High Rainfall (R3) > 345

No Warning

RESULTS: Variation of Employment Status

Refugees' restricted mobility is the basic hindrance towards employment which ultimately limits the ability to cope with natural hazards.

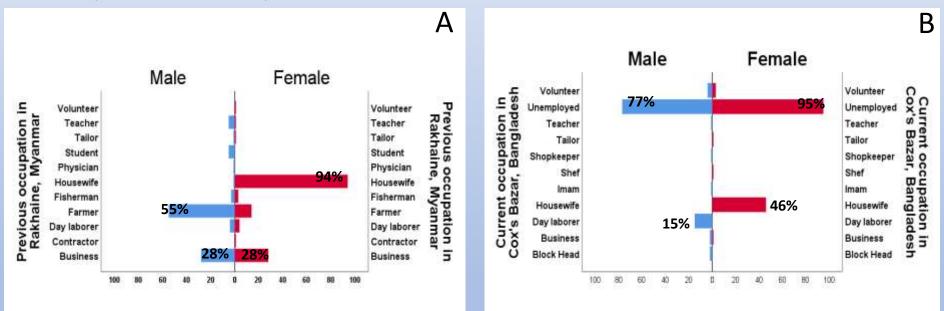
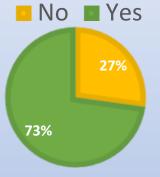
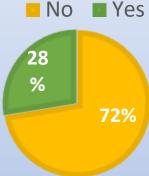




Figure 1. Occupational variation among Rohingyas in Rakhine (A) and Cox's Bazar (B).

RESULTS: Adopted resilient strategies at pre-disaster period

Have you received early warning message about upcoming disaster in the camp?

Do you store dried food in an advance before disaster

Do you store medicine in an advance before disaster?

72

Do you have any storage space (wooden-framed loft or shelf) above the ground where you can keep your Non-food items protected in case of water logging?

46%

No Yes

54%

RESULTS: Adopted resilient strategies at pre-disaster period

- The probability for the literates is 4.032 times higher compared to their illiterate counterparts in storing dried foods before disaster.
- Similarly, literates exhibit 19.5 times higher probability compared to their illiterate counterparts in storing medicines before disaster.

Kashmir – India

18 Soldiers were killed in flash flooding in July 2015 Contents lists available at ScienceDirect

International Journal of Disaster Risk Reduction

journal homepage: www.elsevier.com/locate/ijdrr

Indigenous mountain people's risk perception to environmental hazards in border conflict areas

Bayes Ahmed^{a,b,*}, Peter Sammonds^{a,b,c}, Naomi M. Saville^d, Virginie Le Masson^e, Kavita Suri^f, Ghulam M. Bhat^g, Naveen Hakhoo^g, Tsering Jolden^h, Gulzar Hussainⁱ, Kuenga Wangmo^j, Bindra Thusu^c

* Institute for Risk and Disaster Reduction, University College London (UCL), UK

^b UCL Humanitarian Institute, University College London (UCL), UK

^c Department of Earth Sciences, University College London (UCL), UK

^d Institute for Global Health, University College London (UCL), UK

^e Overseas Development Institute (ODI), London, UK

¹Department of Lifelong Learning, University of Jammu, India

⁸ Institute of Energy Research and Training, University of Jammu, India

h Department of Sociology, University of Jammu, India

Department of Geology, University of Jammu, India

^j Centre for Archaeology and Historical Studies, Royal University of Bhutan, Bhutan

ARTICLE INFO

ABSTRACT


This study aims to understand community risk perception to environmental hazards in a border conflict zone context in high-mountain areas. Participatory rural appraisal (PRA) tools were applied by the social science team. The results were validated with a hazard map prepared by a separate team comprised of geologists. Turtuk, the northernmost village in Ladakh, India located near the line of control with Pakistan was undertaken as a case study. Turtuk represents a high mountain indigenous rural community which has experienced several catastrophic disasters (flash flooding and landslides in 2010, 2014, and 2015) and territorial armed conflicts (wars in 1971 and 1999 with Pakistan) in recent times. The villagers were able to identify various environmental hazards and associated risk zones through participatory timeline diagram, and hazard and dream mapping exercises. The PRA maps matched the geological hazard map of Turtuk, demonstrating that community people

D 144

Keywords: Participatory rural appraisal

Participatory rural appraisal Hindu Kush Himalaya War Landslides Line of control India

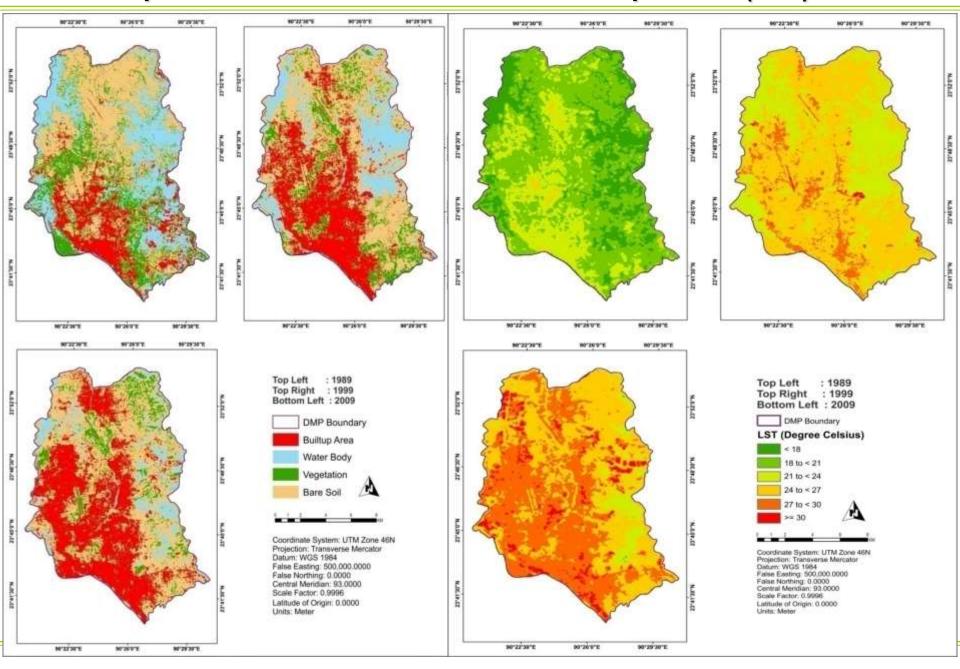
EEFIT Mission in Ecuador

THE MUISNE, ECUADOR EARTHQUAKE OF 16 APRIL 2016

A FIELD REPORT BY EEFIT

Reconstruction Strategy

A strong correlation ($\chi^2 = 0.006$) was calculated for building materials before and after the earthquakes (Table 8-20). Some of the victims from the RC-timber/bamboo houses wanted to relocate in houses predominantly made of timber (21%) or bamboo (13%).

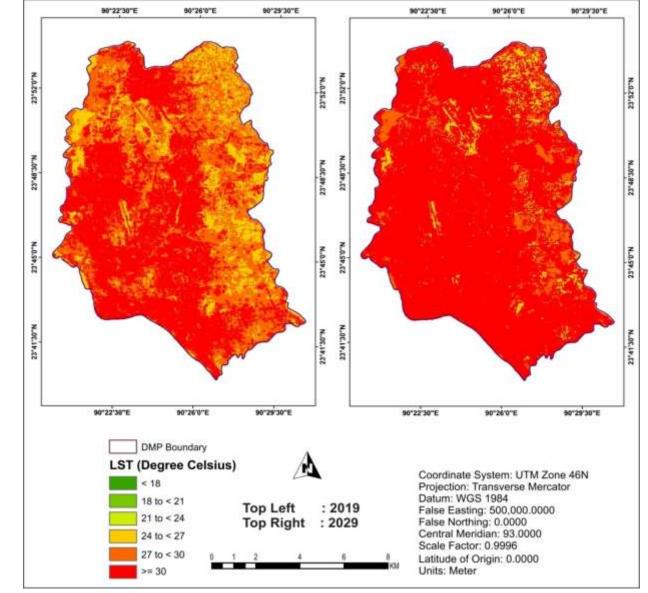

Table 8-20 Building material before and after scenario.

Building Matarial	Building Material (After)					
Building Material (Before)	Concrete	Timber	Bamboo	Timber & Brick Mix	Steel Structure	Total
RC	8.7%	19.1%	0.9%	2.6%		31.3%
Timber/ Bamboo	7.0%	13.0%	2.6%	0.9%		23.5%
RC-Timber/ Bamboo	5.2%	20.9%	13.0%	1.7%	4.3%	45.2%
Total	20.9%	53.0%	16.5%	5.2%	4.3%	100.0%

Number of fleers (before	Number of f	Number of floors (after)		
Number of floors (before	[;] / 1	2	- Total	
1	44.0%	2.6%	46.6%	
2	37.1%	7.8%	44.8%	
3	1.7%	1.7%	3.4%	
4	3.4%		3.4%	
5	1.7%		1.7%	
Total	87.9%	12.1%	100.0%	

Earthquake Engineering Field Investigation Team

Spatial Distribution of Land Surface Temperature (LST)



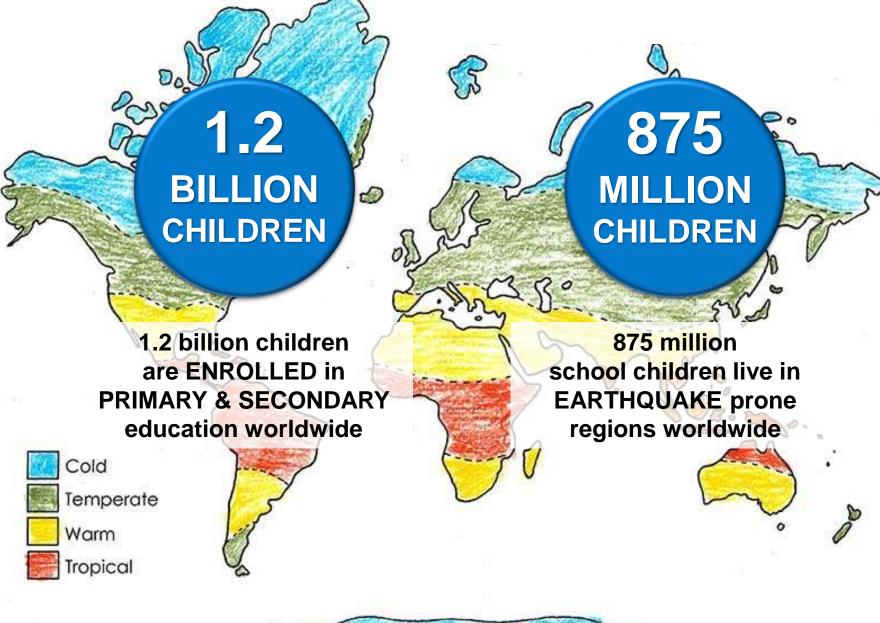
Simulated Land Cover Dynamics (MLP_Markov Model)

90°22'30"E 90"29'30"E 90°22'30°E 90°26'0"E 90°29'30"E 90"26"0"E 23"52'0'N N_0.25.62 N_0.25.52 23°52'0'N NT057487307N 23"48"30"N 23"48'30"N 23°48'30"N 23"45'0"N 23"45'0"N 23*45'0"N 23°45'0'N 23"41'30"N 23"41"30"N 23"41'30"N 23"41'30'1 90"22"30"E 90"29'30"E 90°22'30"E 90"29'30"E 90"26'0"E 90"26'0"E **DMP Boundary** Coordinate System: UTM Zone 46N Projection: Transverse Mercator **Builtup Area** Datum: WGS 1984 False Easting: 500,000.0000 Water Body Top Left 2019 False Northing: 0.0000 Central Meridian: 93.0000 Top Right : 2029 Vegetation Scale Factor: 0.9996 Latitude of Origin: 0.0000 Bare Soil Units: Meter

Approximately 49% and 57% of DMP area will be converted into 'Built-up Area' land cover type in 2019 and 2029, respectively

Simulating the Future LST Maps (2019 and 2029)

Approximately 56% and 87% of DMP area will fall in the Highest Temperature Zone (>= 30°C) in 2019 and 2029, respectively


INSPIRE: Indonesia School Programme to Increase Resilience

Why Schools ?

Why Indonesia ?

Earthquake Intensity

For 20% probability of exceedance in 50 years **Modified Mercalli** Shaking Scale

Weak - Light Moderate - Strong Very Strong Severe - Violent Extreme

Tropical Storm Intensity

For 10% probability of exceedance in 10 years Saffir-Simpson Scale

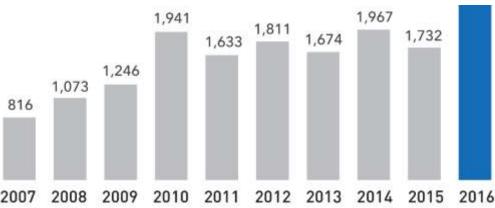
One: 118-153 km/h Two: 154-177 km/h Three: 178-209 km/h Four: 210-249 km/h Five: 250+ km/h

United Nation Office for the Coordination of Humanitarian Affairs (OCHA) [March 2011]

3

4

Why Indonesia ?


Disaster Risk Index 2017

Indonesia, an archipelago of more than **17,000 islands**, is situated in the 'ring of fire'. It is vulnerable to floods, earthquakes and tsunamis, and is home to **77 active volcanoes**. On average, **650,000 people are annually affected** by disasters.

Frequency of Natural Disaster Events

650,000 people are annually affected by disasters in Indonesia.

Source: United Nations Office for the Coordination of Humanitarian Affairs (2018)

High Risk

Low Risk

Why Indonesia ?

Sumatra Tsunami

26 Dec. 2004 Magnitude 9.0 Earthquake Energy of 23,000 Hiroshima atomic bombs 15 – 30m high waves Death & Missing: +220,000 Affected 5 million people Damage: +\$19.9 billion USD

Why Schools ?

Year	Event	No. of schools effected
Dec. 2004	Sumatra Tsunami	>2,000 (damaged)
May 2006	Yogyakarta Earthquake (M _w 6.4)	>3,000 (collapsed)
Sep. 2009	Padang Earthquake (M _w 7.6)	>1,000 (damaged)



Damage of Dec. 2004 Sumatra Tsunami – Indonesia (newstatesman.com)

INSPIRE partners

(Provincial) Education Authority

NGO/Indonesia

Risk Modelling/UK

Insurance/Indonesia

Disaster Risk Reduction and Response

NGO/UK

Develop an advanced, harmonized and sciencebased risk assessment framework for school infrastructure in Indonesia

Objectives

- A. Assess physical and social impact of Earthquakes and Tsunami on school buildings through new ANALYTICAL & EMPIRICAL fragility and VULNERABILITY models.
- **B.** Investigate the enhancement of the multi-hazard resilience of schools through cost-effective, local **RETROFITTING MEASURES**.
- C. Disseminate a culture of safe schools and safe communities through TRAINING of Local Engineers, Regional WORKSHOPS and Disaster Risk Reduction EDUCATION.
- **D.** Develop practical **Tools** for **DATA COLLECTION**, multi-hazards vulnerability prioritization/assessment, and demonstrate to case-study locations.

Future Research Collaboration

Global Challenges Research Fund (GCRF) - UK Research and Innovation (UKRI)

https://www.ukri.org/research/global-challenges-research-fund/

□ Horizon 20-20; Erasmus+

LONDON'S GLOBAL UNIVERSITY

4-5 July 2019

International Conference on the Rohingya Crisis in Comparative Perspective

[•]UCL

We aim to understand the root causes of Rohingya crisis in Myanmar, the drivers of Rohingya influx into Bangladesh, Rohingya diaspora and their adaptation strategies in host countries, and the overall implications for security and peace in the region. We are also keen to compare the Rohingya crisis with other examples of serious crimes against humanity, genocide and war crimes that occurred globally.

VENUE: G11 & G17, UCL INSTITUTE OF ADVANCED STUDIES (IAS), SOUTH WING, GOWER STREET, UNIVERSITY COLLEGE LONDON (UCL), LONDON WC1E 6BT, UK

Please submit your Abstract before 30 April 2019

Organised by: UCL Centre for Collective Violence, Holocaust and Genocide Studies (CCV) & UCL Institute for Risk and Disaster Reduction; Contact Person: Dr Bayes Ahmed; Email: bayes.ahmed@ucl.ac.uk

Thanks so much for your time & attention!

Email: bayes.ahmed@ucl.ac.uk

Question?

